

Welcome to Croupier’s documentation!

Contents:

	Modelling
	Header

	Inputs

	Node Templates

	Outputs

	Advanced: Node Types

	Execution

	Steps

	Installation
	Cloudify Manager

	Croupier Plugin

	Croupier Cloudify plugin
	Requirements

	Compatibility

	Configuration

	Types

	croupier.nodes.InfrastructureInterface

	croupier.nodes.Job

	croupier.nodes.SingularityJob

Indices and tables

	Index

	Module Index

	Search Page

Modelling

Application run by Cloudify/Croupier must be defined in a TOSCA file(s) - The Blueprint. A blueprint is typically composed by a header, an inputs section, a node_templates section, and an outputs section. Optinally can have a node_types section.

Tip

Example blueprints can be found at the Croupier resources repository [https://github.com/ari-apc-lab/croupier-resources].

Header

The header include the TOSCA version used and other imports. In Croupier the Cloudify 1.1.3 tosca version, built-in types and the croupier are mandatory:

tosca_definitions_version: cloudify_dsl_1_3

imports:
 # to speed things up, it is possible to download this file,
 - http://raw.githubusercontent.com/ari-apc-lab/croupier/master/resources/types/cfy_types.yaml
 # Croupier pluging
 - http://raw.githubusercontent.com/ari-apc-lab/croupier/master/plugin.yaml
 # Openstack plugin (Optional)
 - http://www.getcloudify.org/spec/openstack-plugin/2.14.7/plugin.yaml
 # The blueprint can be composed by multiple files, in this case we split the inputs section (Optional)
 - inputs-def.yaml

Other TOSCA files can also be imported in the inports list to compose a blueprint made of more than one file. See Advanced: Node Types for more info.

Inputs

In this section is where it is defined all the inputs that the blueprint need. These then can be passed as an argument list in the CLI, or prefereably by an inputs file. An input can define a default value. (See the CLI docs [https://github.com/ari-apc-lab/croupier-cli/README.md] and the files inputs-def and local-blueprint-inputs-example.yaml in the examples [https://github.com/ari-apc-lab/croupier-resources/examples/inputs]).

inputs:
 hpc_base_dir:
 description: HPC working directory
 default: $HOME

 partition_name:
 default: thinnodes

In the example above, two inputs are defined:

	hpc_base_dir as the base working directory, $HOME by default.

	partition_name as the partition to be used in an HPC, _thinnodes_ by default.

Node Templates

In the node_templates section is where your application is actually defined, by stablishing nodes and relations between them.

To begin with, every node is identified by its name (hpc_interface in the example below), and a type is assigned to it.

Infrastructure Interface example.

node_templates:
 hpc_interface:
 type: croupier.nodes.InfrastructureInterface
 properties:
 config: { get_input: hpc_interface_config }
 credentials: { get_input: hpc_interface_credentials }
 external_monitor_entrypoint: { get_input: monitor_entrypoint }
 job_prefix: { get_input: job_prefix }
 base_dir: { get_input: "hpc_base_dir" }
 monitor_period: 15
 workdir_prefix: "single"

The example above represents a infrastructure interface, with type croupier.nodes.InfrastructureInterface. All computing infrastructures must have a infrastructure interface defined (_Slurm_ or _Torque_ for HPC supported, plain _SHELL_ for Cloud VMs). Then the WM is configured using the inputs (using fuction get_input). Detailed information about how to configure the HPCs is in the Plugin specification section.

The following code uses hpc_interface to describe four jobs that should run in the hpc that represents the node. Two of them are of type croupier.nodes.SingularityJob which means that the job will run using a Singularity [https://singularity.lbl.gov/] container, while the other two of type croupier.nodes.Job describe jobs that are going to run directly in the HPC. Navigate to Croupier plugin types to know more about each parameter.

Four jobs example.

first_job:
 type: croupier.nodes.Job
 properties:
 job_options:
 partition: { get_input: partition_name }
 commands: ["touch fourth_example_1.test"]
 nodes: 1
 tasks: 1
 tasks_per_node: 1
 max_time: "00:01:00"
 skip_cleanup: True
 relationships:
 - type: task_managed_by_interface
 target: hpc_interface

second_parallel_job:
 type: croupier.nodes.Job
 properties:
 job_options:
 partition: { get_input: partition_name }
 commands: ["touch fourth_example_2.test"]
 nodes: 1
 tasks: 1
 tasks_per_node: 1
 max_time: "00:01:00"
 skip_cleanup: True
 relationships:
 - type: task_managed_by_interface
 target: hpc_interface
 - type: job_depends_on
 target: first_job

third_parallel_job:
 type: croupier.nodes.Job
 properties:
 job_options:
 script: "touch.script"
 arguments:
 - "fourth_example_3.test"
 nodes: 1
 tasks: 1
 tasks_per_node: 1
 max_time: "00:01:00"
 partition: { get_input: partition_name }
 deployment:
 bootstrap: "scripts/create_script.sh"
 revert: "scripts/delete_script.sh"
 inputs:
 - "script_"
 skip_cleanup: True
 relationships:
 - type: task_managed_by_interface
 target: hpc_interface
 - type: job_depends_on
 target: first_job

fourth_job:
 type: croupier.nodes.Job
 properties:
 job_options:
 script: "touch.script"
 arguments:
 - "fourth_example_4.test"
 nodes: 1
 tasks: 1
 tasks_per_node: 1
 max_time: "00:01:00"
 partition: { get_input: partition_name }
 deployment:
 bootstrap: "scripts/create_script.sh"
 revert: "scripts/delete_script.sh"
 inputs:
 - "script_"
 skip_cleanup: True
 relationships:
 - type: task_managed_by_interface
 target: hpc_interface
 - type: job_depends_on
 target: second_parallel_job
 - type: job_depends_on
 target: third_parallel_job

Finally, jobs have two main types of relationships: task_managed_by_interface, to stablish which infrastructure interface will run the job, and job_depends_on, to describe the dependency between jobs. In the example above, fourth_job depends on three_parallel_job and second_parallel_job, so it will not execute until the other two have finished. In the same way, three_parallel_job and second_parallel_job depends on first_job, so they will run in parallel once the first job is finished. All jobs are contained in hpc_interface, so they will run on the HPC using the credentials provided. A third one, interface_contained_in is used to link the Infrastructure Interface to other Cloudify plugins, sush as Openstack. See relationships for more information.

Outputs

The last section, outputs, helps to publish different attributes of each node that can be retrieved after the install workflow of the blueprint has finished (See Execution).

Each output has a name, a description, and value.

	outputs:

	
	first_job_name:

	description: first job name
value: { get_attribute: [first_job, job_name] }

	second_job_name:

	description: second job name
value: { get_attribute: [second_parallel_job, job_name] }

	third_job_name:

	description: third job name
value: { get_attribute: [third_parallel_job, job_name] }

	fourth_job_name:

	description: fourth job name
value: { get_attribute: [fourth_job, job_name] }

Advanced: Node Types

Similarly to how node_templates are defined, new node types can be defined to be used as types. Usually these types are going to be defined in a separate file and imported in the blueprint through the import keyword in the header section, although they can be in the same file.

Framework example.

node_types:
 croupier.nodes.fenics_iter:
 derived_from: croupier.nodes.Job
 properties:
 iter_number:
 description: Iteration index (two digits string)
 job_options:
 default:
 pre:
 - 'module load gcc/5.3.0'
 - 'module load impi'
 - 'module load petsc'
 - 'module load parmetis'
 - 'module load zlib'
 script: "$HOME/wing_minimal/fenics-hpc_hpfem/unicorn-minimal/nautilus/fenics_iter.script"
 arguments:
 - { get_property: [SELF, iter_number] }

 croupier.nodes.fenics_post:
 derived_from: croupier.nodes.Job
 properties:
 iter_number:
 description: Iteration index (two digits string)
 file:
 description: Input file for dolfin-post postprocessing
 job_options:
 default:
 pre:
 - 'module load gcc/5.3.0'
 - 'module load impi'
 - 'module load petsc'
 - 'module load parmetis'
 - 'module load zlib'
 script: "$HOME/wing_minimal/fenics-hpc_hpfem/unicorn-minimal/nautilus/post.script"
 arguments:
 - { get_property: [SELF, iter_number] }

Above there is dummy example of two new types of the FEniCS framework, derived from croupier.nodes.Job.

The first type, croupier.nodes.fenics_iter, defines an iteration of the
FEniCS framework. A new property has been defined, iter_number, with a
description and no default value (so it is mandatory). Besides the
job_options property default value has been overriden with a concrete list
of modules, script and arguments.

The second type, croupier.nodes.fenics_post, described a simulated
postprocessing operation of FEniCS, defining again the iter_number property
and another one file. Finally the job options default value has been
overriden with a list of modules, script and arguments.

Note

The arguments reference the built-in function get_property. This allows
the orchestrator to compose the arguments based on other properties. To see
all the functions available, check the Cloudify intrinsic functions.

Execution

Execution of an application is performed through the CLI docs [https://github.com/ari-apc-lab/croupier-cli/README.md] in your local machine or a host of your own.

Steps

	Upload the blueprint

Before doing anything, the blueprint we want to execute needs to be uploaded in the orchestrator with an assigned name.

cfy blueprints upload -b [BLUEPRINT-NAME] [BLUEPRINT-FILE].yaml

	Create a deployment

Once we have a blueprint installed, we create a deployment, which is a blueprint with an input file attached. This is usefull to have the same blueprint that represents the application, with different configurations (deployments). A name has to be assigned to it as well.

cfy deployments create -b [BLUEPRINT-NAME] -i [INPUTS-FILE].yaml --skip-plugins-validation [DEPLOYMENT-NAME]

Note

--skip-plugins-validation is mandatory as we want that the orchestrator download the plugin from a source location (GitHub in our case). This is for testing purposes, and will be removed in future releases.

	Install a deployment

Install workflow puts everything in place to run the application. Usual tasks in this workflow are data movements, binary downloads, HPC configuration, etc.

cfy executions start -d [DEPLOYMENT-NAME] install

	Run the application

Finally to start the execution we run the run_jobs workflow to start sending jobs to the different infrastructures. The execution can be followed in the output.

cfy executions start -d [DEPLOYMENT-NAME] run_jobs

Note

The CLI has a timeout of 900 seconds, which normally is not enough time for an application to finish. However, if the CLI timeout, the execution will still be running on the MSOOrchestrator. To follow the execution just follow the instructions in the output.

Revert previous Steps

The following revert the steps above, in order to uninstall the application, recreate the deployment with new inputs, or remove the blueprint (and possibly upload an updated one), follow the following steps.

	Uninstall a deployment

On the contraty of the install workflow, in this case the orchestrator is tipically goint to perform the revert operation of install, by deleting execution files or moving data to an external location.

cfy executions start -d [DEPLOYMENT-NAME] uninstall -p ignore_failure=true

Note

The ignore_failure parameter is optional, to perform the uninstall even if an error occurs.

	Remove a deployment

cfy deployments delete [DEPLOYMENT-NAME]

	Remove a blueprint

cfy blueprints delete [BLUEPRINT-NAME]

Troubleshooting

If an error occurs the revert steps can be followed revert the last steps made. However there are sometimes when the execution is stucked, or you want simply to cancel a runnin execution, or clear a blueprint or deployment that can be uninstall for whatever the reason. The following commands help you resolve these kind of situations.

	See executions list and status

cfy executions list

	Check one execution status

cfy executions get [EXECUTION-ID]

	Cancel a running (started) execution

cfy executions cancel [EXECUTION-ID]

	Hard remove a deployment with all its executions and living nodes

cfy deployments delete [DEPLOYMENT-NAME] -f

Installation

Croupier, as a Cloudify plugin, must to be run inside the Cloudify Server, a.k.a Cloudify Manager. This section describes how to install Cloudify Manager, with the Croupier plugin.

Cloudify Manager

Docker

Cloudify provides a docker image of the manager. It cannot be configured so, among other things, it is not secure (user admin/admin).

sudo docker run --name cfy_manager -d --restart unless-stopped \
 -v /sys/fs/cgroup:/sys/fs/cgroup:ro \
 --tmpfs /run \
 --tmpfs /run/lock \
 --security-opt seccomp:unconfined \
 --cap-add SYS_ADMIN \
 --network host \
 cloudifyplatform/community:19.01.24

docker run --name cfy_manager -d --restart unless-stopped \
 -v /sys/fs/cgroup:/sys/fs/cgroup:ro \
 --tmpfs /run --tmpfs /run/lock \
 --security-opt seccomp:unconfined \
 --cap-add SYS_ADMIN \
 -p 80:80 \
 -p 8000:8000 \
 cloudifyplatform/community-cloudify-manager-aio

OpenStack plugin (Optional)

cfy plugins upload \
 -y http://www.getcloudify.org/spec/openstack-plugin/2.14.7/plugin.yaml \
 http://repository.cloudifysource.org/cloudify/wagons/cloudify-openstack-plugin/2.14.7/cloudify_openstack_plugin-2.14.7-py27-none-linux_x86_64-centos-Core.wgn

Requirements

Cloudify Manager is supported for installation on a 64-bit host with RHEL/CentOS 7.4.

	
	Minimum

	Recommended

	vCPUs

	2

	8

	RAM

	4GB

	16GB

	Storage

	5GB

	64GB

The minimum requirements are enough for small deployments that only manage a few compute instances. Managers that manage more deployments or large deployments need at least the recommended resources.

Check Cloudify docs [https://docs.cloudify.co/4.5.5/install_maintain/installation/prerequisites/] for full prerequisites details.

Croupier Plugin

TODO

Croupier Cloudify plugin

Requirements

	
	Python version

	
	2.7.x

Compatibility

	Slurm [https://slurm.schedmd.com/] based HPC by ssh user & key/password.

	Moab/Torque [http://www.adaptivecomputing.com/products/open-source/torque] based HPC by ssh user & key/password.

	Tested with Openstack plugin [https://docs.cloudify.co/4.5.5/working_with/official_plugins/openstack].

Tip

Example blueprints can be found at the Croupier resources repository [https://github.com/ari-apc-lab/croupier-resources].

Configuration

The Croupier plugin requires credentials, endpoint and other setup
information in order to authenticate and interact with the computing
infrastructures.

This configuration properties are defined in
credentials and config properties.

credentials:
 host: "[HPC-HOST]"
 user: "[HPC-SSH-USER]"
 private_key: |
 ----BEGIN RSA PRIVATE KEY----

 -----END RSA PRIVATE KEY-----
 private_key_password: "[PRIVATE-KEY-PASSWORD]"
 password: "[HPC-SSH-PASS]"
 login_shell: {true|false}
 tunnel:
 host: ...
 ...

	HPC and ssh credentials. At least private_key or password
must be provided.

	tunnel: Follows the same structure as its parent (credentials),
to connect to the infrastructure through a tunneled SSH connection.

b. login_shell: Some systems may require to connect to them using a
login shell. Default false.

config:
 country_tz: "Europe/Madrid"
 infrastructure_interface: {SLURM|TORQUE|SHELL}

	country_tz: Country Time Zone configured in the the HPC.

	infrastructure_interface: Infrastructure Interface used by the HPC.

Warning

Only Slurm and Torque are currently accepted as infrastructure interfaces
for HPC.
For cloud providers, SHELL is used as interface.

Types

This section describes the node
type [http://docs.getcloudify.org/4.1.0/blueprints/spec-node-types/]
definitions. Nodes describe resources in your HPC infrastructures. For
more information, see node
type [http://docs.getcloudify.org/4.1.0/blueprints/spec-node-types/].

croupier.nodes.InfrastructureInterface

Derived From:
cloudify.nodes.Compute [http://docs.getcloudify.org/4.1.0/blueprints/built-in-types/]

Use this type to describe the interface of a computing infrastructure
(HPC or VM)

Properties:

	config: type of interface and system time zone, as described in config.

	credentials: Access credentials, as described in credentials.

	base_dir: Root directory of the working directory. Default $HOME.

	workdir_prefix: Prefix name of the working directory that will be
created by this interface.

	job_prefix: Job name prefix for the jobs created by this
interface. Default cfyhpc.

	monitor_period: Seconds to check job status. This is necessary
because infrastructure interfaces can be overloaded if asked too much times
in a short period of time. Default 60.

	skip_cleanup: True to not clean all files when destroying the
deployment. Default False.

	simulate: If true, it performs a dry run where jobs are not really
executed and simulate that they finish inmediately. Useful for testing.
Default False.

	external_monitor_entrypoint: Entrypoint of the external monitor
that Cloudify will use instead of the internal one.

	external_monitor_type: Type of the monitoring system when using an
external one. Default {uri-prometheus}[PROMETHEUS].

	external_monitor_port: Port of the monitor when using an external
monitoring system. Default :9090.

	external_monitor_orchestrator_port: Port of the external monitor to
connect with Croupier. Default :8079.

Example

This example demonstrates how to describe a SLURM interface on an HPC.

hpc_interface:
 type: croupier.nodes.InfrastructureInterface
 properties:
 credentials:
 host: "[HPC-HOST]"
 user: "[HPC-SSH-USER]"
 password: "[HPC-SSH-PASS]"
 config:
 country_tz: "Europe/Madrid"
 infrastructure_interface: "SLURM"
 job_prefix: crp
 workdir_prefix: test
 ...

Mapped Operations:

	cloudify.interfaces.lifecycle.configure Checks that there is a
connection between Cloudify and the infrastructure interface,
and creates a new working directory.

	cloudify.interfaces.lifecycle.delete Clean up all data generated
by the execution.

	cloudify.interfaces.monitoring.start If the external monitor
orchestrator is available, sends a notification to start monitoring
the infrastructure.

	cloudify.interfaces.monitoring.stop If the external monitor
orchestrator is available, sends a notification to end monitoring the
infrastructure.

croupier.nodes.Job

Use this type to describe a job
(a task that will execute on the infrastructure).

Properties:

	job_options: Job parameters and needed resources.

	pre: List of commands to be executed before running the job.
Optional.

	post: List of commands to be executed after running the job.
Optional.

	partition: Partition in which the job will be executed. If not
provided, the HPC default will be used.

	commands: List of commands to be executed. Mandatory if script
property is not present.

	script: Script to be executed. Mandatory if commands
property is not present.

	arguments: List of arguments to be passed to execution command.
Variables must be scaped like “\$USER”

	nodes: Nodes to use in job. Default 1.

	tasks: Number of tasks of the job. Default 1.

	tasks_per_node: Number of tasks per node. Default 1.

	max_time: Set a limit on the total run time of the job
allocation. Mandatory if no script is provided, or if the script does
not define such property.

	scale: Execute in parallel the job N times according to this
property. Only for HPC. Default 1 (no scale).

	scale_max_in_parallel: Maximum number of scaled job instances
that can be run in parallel. Only works with scale > 1.
Default same as scale.

	memory: Specify the real memory required per node. Different
units can be specified using the suffix [K|M|G|T]. Default
value "" lets the infrastructure interface assign the default memory
to the job.

	stdout_file: Define the file where to gather the standard
output of the job. Default value "" sets <job-name>.err
filename.

	stderr_file: Define the file where to gather the standard
error output. Default value "" sets <job-name>.out
filename.

	mail-user: Email to receive notification of job state changes.
Default value "" does not send any mail.

	mail-type: Type of event to be notified by mail, can define
several events separated by comma. Valid values
NONE, BEGIN, END, FAIL, TIME_LIMIT, REQUEUE, ALL. Default
value "" does not send any mail.

	reservation: Allocate resources for the job from the named
reservation. Default value "" does not allocate from any named
reservation.

	qos: Request a quality of service for the job. Default value
"" lets de infrastructure interface assign the default user qos.

	deployment: Scripts to perform deployment operations. Optional.

	bootstrap: Relative path to blueprint to the script that will
be executed in the HPC at the install workflow to bootstrap the
job (like data movements, binary download, etc.)

	revert: Relative path to blueprint to the script that will be
executed in the HPC at the uninstall workflow, reverting the
bootstrap or other clean up operations.

	inputs: List of inputs that will be passed to the scripts when
executed in the HPC.

	publish: A list of outputs to be published after job execution.
Each list item is a dictionary containing:

	type: Type of the external repository to be published. Only
CKAN is supported for now. The rest of the parameters depends
on the type.

	type: CKAN

	entrypoint: ckan entrypoint

	api_key: Individual user ckan api key.

	dataset: Id of the dataset in which the file will be
published.

	file_path: Local path of the output file in the computation
node.

	name: Name used to publish the file in the repository.

	description: Text describing the data file.

	skip_cleanup: Set to true to not clean up orchestrator auxiliar
files. Default False.

Note

The variable $CURRENT_WORKDIR is available in all operations and
scripts. It points to the working directory of the execution in the
HPC from the HOME directory: /home/user/$CURRENT_WORKDIR/.

Note

The variables $SCALE_INDEX, $SCALE_COUNT and $SCALE_MAX
are available in all commands and inside the scripts where
DYNAMIC VARIABLES exist (they will be dynamicaly loaded after
this line). They hold, for each job instance, the index, the total
number of instances, and the maximun in parallel respectively.

Example

This example demonstrates how to describe a job.

hpc_job:
 type: croupier.nodes.Job
 properties:
 job_options:
 partition: { get_input: partition_name }
 commands: ["touch job-$SCALE_INDEX.test"]
 nodes: 1
 tasks: 1
 tasks_per_node: 1
 max_time: "00:01:00"
 scale: 4
 skip_cleanup: True
 relationships:
 - type: task_managed_by_interface
 target: hpc_interface
 ...

This example demonstrates how to describe an script job.

hpc_job:
 type: croupier.nodes.Job
 properties:
 job_options:
 script: "touch.script"
 arguments:
 - "job-\\$SCALE_INDEX.test"
 nodes: 1
 tasks: 1
 tasks_per_node: 1
 max_time: "00:01:00"
 partition: { get_input: partition_name }
 scale: 4
 deployment:
 bootstrap: "scripts/create_script.sh"
 revert: "scripts/delete_script.sh"
 inputs:
 - "script-"
 skip_cleanup: True
 relationships:
 - type: task_managed_by_interface
 target: hpc_interface
 ...

Mapped Operations:

	cloudify.interfaces.lifecycle.start Send and execute the
bootstrap script.

	cloudify.interfaces.lifecycle.stop Send and execute the revert
script.

	croupier.interfaces.lifecycle.queue Queues the job in the HPC.

	croupier.interfaces.lifecycle.publish Publish outputs outside the HPC.

	croupier.interfaces.lifecycle.cleanup Clean up operations after job is
finished.

	croupier.interfaces.lifecycle.cancel Cancels a queued job.

croupier.nodes.SingularityJob

Derived From: croupier_nodes_job

Use this tipe to describe a job executed from a
Singularity [http://singularity.lbl.gov/] container.

Properties:

	job_options: Job parameters and needed resources.

	pre: List of commands to be executed before running
singularity container. Optional.

	post: List of commands to be executed after running
singularity container. Optional.

	image: Singularity [http://singularity.lbl.gov/] image
file.

	home: Home volume that will be bind with the image instance
(Optional).

	volumes: List of volumes that will be bind with the image
instance.

	partition: Partition in which the job will be executed. If not
provided, the HPC default will be used.

	nodes: Necessary nodes of the job. 1 by default.

	tasks: Number of tasks of the job. 1 by default.

	tasks_per_node: Number of tasks per node. 1 by default.

	max_time: Set a limit on the total run time of the job
allocation. Mandatory if no script is provided.

	scale: Execute in parallel the job N times according to this
property. Default 1 (no scale).

	scale_max_in_parallel: Maximum number of scaled job instances
that can be run in parallel. Only works with scale > 1.
Default same as scale.

	memory: Specify the real memory required per node. Different
units can be specified using the suffix [K|M|G|T]. Default
value "" lets the infrastructure interface assign the default memory
to the job.

	stdout_file: Define the file where to gather the standard
output of the job. Default value "" sets <job-name>.err
filename.

	stderr_file: Define the file where to gather the standard
error output. Default value "" sets <job-name>.out
filename.

	mail-user: Email to receive notification of job state changes.
Default value "" does not send any mail.

	mail-type: Type of event to be notified by mail, can define
several events separated by comma. Valid values
NONE, BEGIN, END, FAIL, TIME_LIMIT, REQUEUE, ALL. Default
value "" does not send any mail.

	reservation: Allocate resources for the job from the named
reservation. Default value "" does not allocate from any named
reservation.

	qos: Request a quality of service for the job. Default value
"" lets de infrastructure interface assign the default user qos.

	deployment: Optional scripts to perform deployment operations
(bootstrap and revert).

	bootstrap: Relative path to blueprint to the script that will
be executed in the HPC at the install workflow to bootstrap the
job (like image download, data movements, etc.)

	revert: Relative path to blueprint to the script that will be
executed in the HPC at the uninstall workflow, reverting the
bootstrap or other clean up operations (like removing the image).

	inputs: List of inputs that will be passed to the scripts when
executed in the HPC

	skip_cleanup: Set to true to not clean up orchestrator auxiliar
files. Default False.

Note

The variable $CURRENT_WORKDIR is available in all operations and
scripts. It points to the working directory of the execution in the
HPC from the HOME directory: /home/user/$CURRENT_WORKDIR/.

Note

The variables $SCALE_INDEX, $SCALE_COUNT and $SCALE_MAX are available
when scaling, holding for each job instance the index, the total
number of instances, and the maximun in parallel respectively.

Example

This example demonstrates how to describe a new job executed in a
Singularity [http://singularity.lbl.gov/] container.

singularity_job:
 type: croupier.nodes.SingularityJob
 properties:
 job_options:
 pre:
 - { get_input: mpi_load_command }
 - { get_input: singularity_load_command }
 partition: { get_input: partition_name }
 image: {
 concat:
 [
 { get_input: singularity_image_storage },
 "/",
 { get_input: singularity_image_filename },
],
 }
 volumes:
 - { get_input: scratch_voulume_mount_point }
 - { get_input: singularity_mount_point }
 commands: ["touch singularity.test"]
 nodes: 1
 tasks: 1
 tasks_per_node: 1
 max_time: "00:01:00"
 deployment:
 bootstrap: "scripts/singularity_bootstrap_example.sh"
 revert: "scripts/singularity_revert_example.sh"
 inputs:
 - { get_input: singularity_image_storage }
 - { get_input: singularity_image_filename }
 - { get_input: singularity_image_uri }
 - { get_input: singularity_load_command }
 skip_cleanup: True
 relationships:
 - type: task_managed_by_interface
 target: hpc_interface
 ...

Mapped Operations:

	cloudify.interfaces.lifecycle.start Send and execute the
bootstrap script.

	cloudify.interfaces.lifecycle.stop Send and execute the revert
script.

	croupier.interfaces.lifecycle.queue Queues the job in the HPC.

	croupier.interfaces.lifecycle.publish Publish outputs outside the HPC.

	croupier.interfaces.lifecycle.cleanup Clean up operations after job is
finished.

	croupier.interfaces.lifecycle.cancel Cancels a queued job.

Relationships

See the
relationships [http://docs.getcloudify.org/4.1.0/blueprints/spec-relationships/]
section.

The following plugin relationship operations are defined in the HPC
plugin:

	task_managed_by_interface Sets a croupier_nodes_job to be executed
by interface croupier_nodes_interface.

	job_depends_on Sets a croupier_nodes_job as a dependency of
the target (another croupier_nodes_job), so the target job
needs to finish before the source can start.

	interface_contained_in Sets a croupier_nodes_interface to be
contained in the specific target (a computing node).

Tests

To run the tests Cloudify CLI has to be installed locally. Example
blueprints can be found at tests/blueprint folder and have the
simulate option active by default. Blueprint to be tested can be
changed at workflows_tests.py in the tests folder.

To run the tests against a real HPC / Monitor system, copy the file
blueprint-inputs.yaml to local-blueprint-inputs.yaml and edit with
your credentials. Then edit the blueprint commenting the simulate
option, and other parameters as you wish (e.g change the name ft2_node
for your own hpc name). To use the openstack integration, your private
key must be put in the folder inputs/keys.

Note

dev-requirements.txt needs to be installed
(windev-requirements.txt for windows):

pip install -r dev-requirements.txt

To run the tests, run tox on the root folder

tox -e flake8,unit,integration

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to Croupier’s documentation!

 		
 Modelling

 		
 Header

 		
 Inputs

 		
 Node Templates

 		
 Outputs

 		
 Advanced: Node Types

 		
 Execution

 		
 Steps

 		
 Revert previous Steps

 		
 Troubleshooting

 		
 Installation

 		
 Cloudify Manager

 		
 Docker

 		
 Requirements

 		
 Croupier Plugin

 		
 Croupier Cloudify plugin

 		
 Requirements

 		
 Compatibility

 		
 Configuration

 		
 Types

 		
 croupier.nodes.InfrastructureInterface

 		
 croupier.nodes.Job

 		
 croupier.nodes.SingularityJob

 		
 Relationships

 		
 Tests

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

